Mark Scheme (Results) January 2010

GCE

Core Mathematics C2 (6664)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

January 2010
Publications Code US022707
All the material in this publication is copyright
© Edexcel Ltd 2010

January 2010
Core Mathematics C2 6664
Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{gather*} {\left[(3-x)^{6}=\right] 3^{6}+3^{5} \times 6 \times(-x)+3^{4} \times\binom{ 6}{2} \times(-x)^{2}} \\ =729, \quad-1458 x, \quad+1215 x^{2} \tag{4} \end{gather*}$	M1 $\mathrm{B} 1, \mathrm{~A} 1, \mathrm{~A} 1$
Notes	M1 for either the x term or the x^{2} term. Requires correct binomial coefficient in any form with the correct power of x - condone lack of negative sign and wrong power of 3. This mark may be given if no working is shown, but one of the terms including x is correct. Allow $\frac{6}{1}$, or $\frac{6}{2}$ (must have a power of 3 , even if only power 1) First term must be 729 for $\mathbf{B 1}$, (writing just 3^{6} is $\mathbf{B 0}$) can isw if numbers added to this constant later. Can allow 729(1... Term must be simplified to $-1458 x$ for A1cao. The x is required for this mark. Final A1is c.a.o and needs to be $+1215 x^{2}$ (can follow omission of negative sign in working) Descending powers of x would be $x^{6}+3 \times 6 \times(-x)^{5}+3^{2} \times\binom{ 6}{4} \times(-x)^{4}+$.. i.e. $x^{6}-18 x^{5}+135 x^{4}+.$. This is M1B1A0A0 if completely "correct" or M1 B0A0A0 for correct binomial coefficient in any form with the correct power of x as before	
Alternative	NB Alternative method: $(3-x)^{6}=3^{6}\left(1+6 \times\left(-\frac{x}{3}\right)+\binom{6}{2} \times\left(-\frac{x}{3}\right)^{2}+..\right)$ is M1B0A0A0 - answers must be simplified to 729, $-1458 x, \quad+1215 x^{2}$ for full marks (awarded as before) The mistake $(3-x)^{6}=3\left(1-\frac{x}{3}\right)^{6}=3\left(1+6 \times\left(-\frac{x}{3}\right)+\times\binom{ 6}{2} \times\left(-\frac{x}{3}\right)^{2}+..\right)$ may also be awarded M1B0A0A0 Another mistake $3^{6}\left(1-6 x+15 x^{2} \ldots\right)=729 \ldots$ would be M1B1A0A0	

Question Number	Scheme	Marks
Q2 (a) (b)	$\begin{align*} & 5 \sin x=1+2\left(1-\sin ^{2} x\right) \\ & 2 \sin ^{2} x+5 \sin x-3=0 \tag{*}\\ & (2 s-1)(\mathrm{s}+3)=0 \text { giving } s= \\ & {[\sin x=-3 \text { has no solution }] \text { so } \sin x=\frac{1}{2}} \\ & \quad \therefore \quad x=30,150 \end{align*}$	(2) M1 A1 B1, B1ft (4) [6]
(a) (b)	M1 for a correct method to change $\cos ^{2} x$ into $\sin ^{2} x$ (must use $\cos ^{2} x=1-\sin ^{2} x$) A1 need 3 term quadratic printed in any order with $=0$ included M1 for attempt to solve given quadratic (usual rules for solving quadratics) (can use any variable here, s, y, x, or $\sin x$) A1 requires no incorrect work seen and is for $\sin x=\frac{1}{2} \quad$ or $x=\sin ^{-1} \frac{1}{2}$ $y=\frac{1}{2}$ is A0 (unless followed by $x=30$) B1 for $30(\alpha)$ not dependent on method $2^{\text {nd }}$ B1 for 180- $\alpha \quad$ provided in required range (otherwise 540- α) Extra solutions outside required range: Ignore Extra solutions inside required range: Lose final B1 Answers in radians: Lose final B1 S.C. Merely writes down two correct answers is M0A0B1B1 Or $\sin x=\frac{1}{2} \quad \therefore \quad x=30,150$ is M1A1B1B1 Just gives one answer : 30 only is M0A0B1B0 or 150 only is M0A0B0B1 NB Common error is to factorise wrongly giving $(2 \sin x+1)(\sin x-3)=0$ $\left[\sin x=3\right.$ gives no solution] $\sin x=-\frac{1}{2} \quad \Rightarrow \quad x=210,330$ This earns M1 A0 B0 B1ft Another common error is to factorise correctly $(2 \sin x-1)(\sin x+3)=0$ and follow this with $\sin x=\frac{1}{2}, \sin x=3$ then $x=30^{\circ}, 150^{\circ}$ This would be M1 A0 B1 B1	

Question Number	Scheme	Marks
Q3 (a) (b)	$\begin{aligned} & \mathrm{f}\left(\frac{1}{2}\right)=2 \times \frac{1}{8}+a \times \frac{1}{4}+b \times \frac{1}{2}-6 \\ & \mathrm{f}\left(\frac{1}{2}\right)=-5 \Rightarrow \frac{1}{4} a+\frac{1}{2} b=\frac{3}{4} \quad \text { or } a+2 b=3 \\ & \mathrm{f}(-2)=-16+4 a-2 b-6 \\ & \mathrm{f}(-2)=0 \Rightarrow 4 a-2 b=22 \end{aligned}$ Eliminating one variable from 2 linear simultaneous equations in a and b $a=5$ and $b=-1$ $\begin{aligned} 2 x^{3}+5 x^{2}-x-6 & =(x+2)\left(2 x^{2}+x-3\right) \\ & =(x+2)(2 x+3)(x-1) \end{aligned}$ NB $(x+2)\left(x+\frac{3}{2}\right)(2 x-2)$ is A0 \quad But $2(x+2)\left(x+\frac{3}{2}\right)(x-1)$ is A1	M1 A1 M1 A1 M1 A1 (6) M1 M1 A1 (3) $[9]$
(a) (b)	$1^{\text {st }}$ M1 for attempting $f\left(\pm \frac{1}{2}\right)$ Treat the omission of the -5 here as a slip and allow the M mark. $1^{\text {st }} \mathrm{A} 1 \quad$ for first correct equation in a and b simplified to three non zero terms (needs -5 used) s.c. If it is not simplified to three terms but is correct and is then used correctly with second equation to give correct answers- this mark can be awarded later. $2^{\text {nd }}$ M1 for attempting $f(\mp 2)$ $2^{\text {nd }}$ A1 for the second correct equation in a and b. simplified to three terms (needs 0 used) s.c. If it is not simplified to three terms but is correct and is then used correctly with first equation to give correct answers - this mark can be awarded later. $3^{\text {rd }}$ M1 for an attempt to eliminate one variable from 2 linear simultaneous equations in a and b $3^{\text {rd }} \mathrm{A} 1$ for both $a=5$ and $b=-1$ (Correct answers here imply previous two A marks) $1^{\text {st }}$ M1 for attempt to divide by $(x+2)$ leading to a 3 TQ beginning with correct term usually $2 x^{2}$ $2^{\text {nd }}$ M1 for attempt to factorize their quadratic provided no remainder A 1 is cao and needs all three factors Ignore following work (such as a solution to a quadratic equation).	
(a)	Alternative; M1 for dividing by $(2 x-1)$, to get $x^{2}+\left(\frac{a+1}{2}\right) x+$ constant with remainder as a function of \boldsymbol{a} and \boldsymbol{b}, and A1 as before for equations stated in scheme . M1 for dividing by $(x+2)$, to get $2 x^{2}+(a-4) x \ldots$ (No need to see remainder as it is zero and comparison of coefficients may be used) with A1 as before Alternative; M1 for finding second factor correctly by factor theorem, usually $(x-1)$ M1 for using two known factors to find third factor, usually ($2 x \pm 3$) Then A1 for correct factorisation written as product $(x+2)(2 x+3)(x-1)$	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }_{\text {Sarks }}\) \\
\hline \begin{tabular}{l}
Q4 \\
(a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{l}
Either \(\frac{\sin (A \hat{C} B)}{5}=\frac{\sin 0.6}{4}\) \\
\(\therefore A \hat{C} B=\arcsin (0.7058 \ldots)\) \\
\(=[0.7835 .\). or 2.358\(]\) \\
Use angles of triangle \\
\(A \hat{B} C=\pi-0.6-A \hat{C} B\) \\
\((\) But as \(A C\) is the longest side so \()\) \\
\(A \hat{B} C=1.76\left(^{*}\right)(3 \mathrm{sf})\left[\right.\) Allow \(\left.100.7^{\circ} \rightarrow 1.76\right]\) \\
In degrees \(0.6=34.377^{\circ}, \mathrm{ACB}=44.9^{\circ}\) \\
\hline
\end{tabular}
\[
\begin{align*}
\& \text { or } 4^{2}=b^{2}+5^{2}-2 \times b \times 5 \cos 0.6 \\
\& \therefore b=\frac{10 \cos 0.6 \pm \sqrt{\left(100 \cos ^{2} 0.6-36\right)}}{2} \\
\& =[6.96 \text { or } 1.29] \\
\& \text { Use sine } / \text { cosine rule with value for } b \\
\& \sin B=\frac{\sin 0.6}{4} \times b \text { or } \cos B=\frac{25+16-b^{2}}{40} \\
\& \text { (But as } A C \text { is the longest side so) } \\
\& A \hat{B} C=1.76(*)(3 \mathrm{sf}) \tag{4}
\end{align*}
\]
\[
\lfloor C \hat{B} D=\pi-1.76=1.38\rfloor \text { Sector area }=\frac{1}{2} \times 4^{2} \times(\pi-1.76)=[11.0 \sim 11.1] \frac{1}{2} \times 4^{2} \times 79.3 \text { is M0 }
\] \\
Area of \(\triangle A B C=\frac{1}{2} \times 5 \times 4 \times \sin (1.76)=[9.8]\) or \(\frac{1}{2} \times 5 \times 4 \times \sin 101\) \\
Required area \(=\operatorname{awrt} 20.8\) or 20.9 or 21.0 or gives 21 (2 sf) after correct work.
\end{tabular} \\
\hline (a)

(b) \& | $1^{\text {st }} \mathrm{M} 1$ for correct use of sine rule to find $A C B$ or cosine rule to find b (M0 for ABC here or for use of $\sin \mathrm{x}$ where x could be $A B C$) |
| :--- |
| $2^{\text {nd }} \mathrm{M} 1$ for a correct expression for angle $A C B$ (This mark may be implied by .7835 or by arcsin (.7058)) and needs accuracy. In second method this M1 is for correct expression for b - may be implied by 6.96. [Note $10 \cos 0.6 \approx 8.3$] (do not need two answers) |
| $3^{\text {rd }} \mathrm{M} 1$ for a correct method to get angle $A B C$ in method (i) or $\sin A B C$ or $\cos A B C$, in method (ii) (If $\sin B>1$, can have M1A0) |
| A1cso for correct work leading to 1.763 sf . Do not need to see angle 0.1835 considered and rejected. |
| $1^{\text {st }} \mathrm{M} 1$ for a correct expression for sector area or a value in the range $11.0-11.1$ |
| $2^{\text {nd }} \mathrm{M} 1$ for a correct expression for the area of the triangle or a value of 9.8 |
| Ignore 0.31 (working in degrees) as subsequent work. |
| A1 for answers which round to 20.8 or 20.9 or 21.0 . No need to see units. |

\hline (a) \& | Special case If answer 1.76 is assumed then usual mark is M0 M0 M0 A0. A Fully checked method may be worth M1 M1 M0 A0. A maximum of 2 marks. The mark is either 2 or 0 . |
| :--- |
| Either M1 for $A \hat{C} B$ is found to be 0,7816 (angles of triangle) then |
| M1 for checking $\frac{\sin (A \hat{C} B)}{5}=\frac{\sin 0.6}{4}$ with conclusion giving numerical answers |
| This gives a maximum mark of $\mathbf{2 / 4}$ |
| OR M1 for b is found to be 6.97 (cosine rule) |
| M1 for checking $\frac{\sin (A B C)}{b}=\frac{\sin 0.6}{4}$ with conclusion giving numerical answers |
| This gives a maximum mark of $\mathbf{2 / 4}$ |
| Candidates making this assumption need a complete method. They cannot earn M1M0. |
| So the score will be 0 or 2 for part (a). Circular arguments earn 0/4. |

\hline
\end{tabular}

Question Number	Scheme	Marks
Q5 (a) (b)	$\begin{aligned} & \log _{x} 64=2 \Rightarrow 64=x^{2} \\ & \log _{2}(11-6 x)=\log _{2}(x-1)^{2}+3 \\ & \log _{2}\left[\frac{11-6 x}{(x-1)^{2}}\right]=3 \\ & \frac{11-6 x}{(x-1)^{2}}=2^{3} \\ &\{11-6 x\left.=8\left(x^{2}-2 x+1\right)\right\} \text { and so } 0=8 x^{2}-10 x-3 \\ & 0=(4 x+1)(2 x-3) \Rightarrow x=\ldots \\ & x=\frac{3}{2},\left[-\frac{1}{4}\right] \end{aligned}$	(2) M1 M1 M1 A1 dM1 A1 (6) [8]
(a) (b)	M1 for getting out of logs A1 Do not need to see $x=-8$ appear and get rejected. Ignore $x=-8$ as extra solution. $x=8$ with no working is M1 A1 $1^{\text {st }}$ M1 for using the $n \log x$ rule $2^{\text {nd }}$ M1 for using the $\log x-\log y$ rule or the $\log x+\log y$ rule as appropriate $3^{\text {rd }}$ M1 for using 2 to the power- need to see 2^{3} or 8 (May see $3=\log _{2} 8$ used) If all three M marks have been earned and logs are still present in equation do not give final M1. So solution stopping at $\log _{2}\left[\frac{11-6 x}{(x-1)^{2}}\right]=\log _{2} 8$ would earn M1M1M0 $1^{\text {st }} \mathrm{A} 1$ for a correct 3TQ $4^{\text {th }}$ dependent M1 for attempt to solve or factorize their 3TQ to obtain $x=\ldots$ (mark depends on three previous M marks) $2^{\text {nd }} \mathrm{A} 1$ for 1.5 (ignore -0.25) s.c 1.5 only - no working - is 0 marks	
(a)	Alternatives Change base : (i) $\frac{\log _{2} 64}{\log _{2} x}=2$, so $\log _{2} x=3$ and $x=2^{3}$, is M1 or (ii) $\frac{\log _{10} 64}{\log _{10} x}=2, \log x=\frac{1}{2} \log 64$ so $x=64^{\frac{1}{2}}$ is M1 then $x=8$ is A1 BUT $\log x=0.903$ so $x=8$ is M1A0 (loses accuracy mark) (iii) $\log _{64} x=\frac{1}{2}$ so $x=64^{\frac{1}{2}}$ is M1 then $x=8$ is A1	

Question Number	Scheme	Marks
(a) (b) (c) (d)	$\begin{aligned} & 18000 \times(0.8)^{3} \quad=£ 9216 * \quad \text { [may see } \frac{4}{5} \text { or } 80 \% \text { or equivalent]. } \\ & \begin{array}{c} 18000 \times(0.8)^{n}<1000 \\ n \log (0.8)<\log \left(\frac{1}{18}\right) \\ n> \\ \log \left(\frac{1}{18}\right) \\ \log (0.8) \end{array}=12.952 \ldots \quad \text { so } n=13 . \\ & u_{5}=200 \times(1.12)^{4}, \quad=£ 314.70 \text { or } £ 314.71 \\ & S_{15}=\frac{200\left(1.12^{15}-1\right)}{1.12-1} \text { or } \frac{200\left(1-1.12^{15}\right)}{1-1.12},=7455.94 \ldots \ldots \quad \text { awrt } £ 7460 \end{aligned}$	B1cso (1) M1 M1 A1 cso (3) M1, A1 (2) M1A1, A1 (3) [9]
(a) (b) (c) (d)	B1 NB Answer is printed so need working. May see as above or $\times 0.8$ in three steps giving 14400, 11520, 9216. Do not need to see $£$ sign but should see 9216 . $1^{\text {st }} \mathrm{M} 1$ for an attempt to use nth term and 1000. Allow n or $n-1$ and allow $>$ or $=$ $2^{\text {nd }}$ M1 for use of logs to find n Allow n or $n-1$ and allow $>$ or $=$ A1 Need $n=13$ This is an accuracy mark and must follow award of both M marks but should not follow incorrect work using $n-1$ for example. Condone slips in inequality signs here. M1 for use of their a and r in formula for $5^{\text {th }}$ term of GP A1 cao need one of these answers - answer can imply method here NB 314.7 - A0 M1 for use of sum to 15 terms of GP using their a and their r (allow if formula stated correctly and one error in substitution, but must use n not $n-1$) $1^{\text {st }}$ A1 for a fully correct expression (not evaluated)	
(b) (c) (d)	Alternative Methods Trial and Improvement See 989.56 (or 989 or 990) identified with 12, 13 or 14 years for first M1 See 1236.95 (or 1236 or 1237) identified with 11,12 or 13 years for second M1 Then $n=13$ is $\mathbf{A 1}$ (needs both Ms) Special case $18000 \times(0.8)^{n}<1000$ so $n=13$ as $989.56<1000$ is M1M0A0 (not discounted $n=12$) May see the terms $224,250.88,280.99,314.71$ with a small slip for M1 A0, or done accurately for M1A1 Adds 15 terms $200+224+250.88+\ldots \quad+(977.42) \quad$ M1 Seeing $977 \ldots$ is $\mathbf{A 1}$ Obtains answer 7455.94 A1 or awrt £7460 NOT 7450	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }_{\text {S }}\) Marks \\
\hline \begin{tabular}{l}
Q7 (a) \\
(b) \\
(c) \\
(d)
\end{tabular} \& \\
\hline (a)
(b)
(c)

(d) \& | M1 for attempt to find L and M |
| :--- |
| A1 Accept $x=1$ and $x=4$, then isw or accept $L=(1,0), M=(4,0)$ |
| Do not accept $L=1, M=4$ nor $(0,1),(0,4)$ (unless subsequent work) |
| Do not need to distinguish L and M. Answers imply M1A1. |
| See substitution, working should be shown, need conclusion which could be just $y=4$ or a tick. Allow $y=25-25+4=4$ But not $25-25+4=4$. ($y=4$ may appear at start $)$ |
| Usually $0=0$ or $4=4$ is B0 |
| M1 for attempt to integrate $x^{2} \rightarrow k x^{3}, x \rightarrow k x^{2}$ or $4 \rightarrow 4 x$ |
| A1 for correct integration of all three terms (do not need constant) isw. |
| Mark correct work when seen. So e.g. $\frac{1}{3} x^{3}-\frac{5}{2} x^{2}+4 x$ is A1 then $2 x^{3}-15 x^{2}+24 x$ would be ignored as subsequent work. |
| B1 for this triangle only (not triangle $L M N$) |
| $1^{\text {st }} \mathrm{M} 1$ for substituting 5 into their changed function |
| $2^{\text {nd }} \mathrm{M} 1$ for substituting 4 into their changed function |

\hline (d) \& | Alternative method: $\quad \int_{1}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x+\int_{1}^{4} x^{2}-5 x+4 \mathrm{~d} x$ can lead to correct answer Constructs $\int_{1}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x$ is B1 |
| :--- |
| M1 for substituting 5 and 1 and subtracting in first integral |
| M1 for substituting 4 and 1 and subtracting in second integral |
| A1 for answer to first integral i.e. $\frac{32}{3}$ (allow 10.7) and A1 for final answer as before.. |

\hline
\end{tabular}

(d) Another alternative
$\int_{4}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x+$ area of triangle $L M P$
Constructs $\int_{4}^{5}(x-1)-\left(x^{2}-5 x+4\right) \mathrm{d} x$ is B1
M1 for substituting 5 and 4 and subtracting in first integral
M1 for complete method to find area of triangle (4.5)
A1 for answer to first integral i.e. $\frac{5}{3}$ and A1 for final answer as before.
(d) Could also use
$\int_{4}^{5}(4 x-16)-\left(x^{2}-5 x+4\right) \mathrm{d} x+$ area of triangle $L M N$
Similar scheme to previous one. Triangle has area 6
A1 for finding Integral has value $\frac{1}{6}$ and A1 for final answer as before.

Question Number	Scheme	Marks
Q8 (a) (b)	$\begin{gather*} N(2,-1) \\ r=\sqrt{\frac{169}{4}}=\frac{13}{2}=6.5 \tag{1} \end{gather*}$	$\begin{array}{ll} \mathrm{B} 1, \mathrm{~B} 1 & \\ & \text { (2) } \\ \text { B1 } & \text { (1) } \end{array}$
(c)	Complete Method to find x coordinates, $x_{2}-x_{1}=12$ and $\frac{x_{1}+x_{2}}{2}=2$ then solve To obtain $x_{1}=-4, \quad x_{2}=8$ Complete Method to find y coordinates, using equation of circle or Pythagoras i.e. let d be the distance below N of A then $d^{2}=6.5^{2}-6^{2} \Rightarrow d=2.5 \Rightarrow y=$. . So $y_{2}=y_{1}=-3.5$	M1 A1ft A1ft M1 A1 (5)
(d)	Let $A \hat{N} B=2 \theta \Rightarrow \sin \theta=\frac{6}{" 6.5 "} \Rightarrow \theta=(67.38) \ldots$ So angle $A N B$ is 134.8 *	M1 A1 (2)
(e)	$A P$ is perpendicular to $A N$ so using triangle $A N P \tan \theta=\frac{A P}{" 6.5 "}$	M1
	Therefore $\quad A P=15.6$	A1cao (2)
		[12]
(b)	B1 for $2(\alpha), \mathrm{B} 1$ for -1	
	B1 for 6.5 o.e.	
(c)	$1^{\text {st }}$ M1 for finding x coordinates - may be awarded if either x co-ord is correct	
	A1ft,A1ft are for $\alpha-6$ and $\alpha+6$ if x coordinate of N is α	
	$2^{\text {nd }}$ M1 for a method to find y coordinates - may be given if y co-ordinate is correct A marks is for -3.5 only.	
(d)	M1 for a full method to find θ or angle $A N B$ (eg sine rule or cosine rule directly or finding another angle and using angles of triangle.) ft their $\mathbf{6 . 5}$ from radius or	
	$\left(\cos A N B=\frac{" 6.5^{22}+" 6.5{ }^{\prime 2}-12^{2}}{2 \times " 6.5 " \times " 6.5^{\prime}}=-0.704\right)$	
	A1 is a printed answer and must be 134.8 - do not accept 134.76.	
(e)	M1 for a full method to find $A P$	
	N.B. May use triangle $A X P$ where X is the mid point of $A B$. Or may use triangle	
	$A B P$. From circle theorems may use angle $B A P=67.38$ or some variation.	
	$\operatorname{Eg} \frac{A P}{\sin 67.4}=\frac{12}{\sin 45.2}, A P=\frac{6}{\sin 22.6}$ or $A P=\frac{6}{\cos 67.4}$ are each worth M1	

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }^{\text {S }}\) Marks \\
\hline \begin{tabular}{l}
(a) \\
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\[
\left[y=12 x^{\frac{1}{2}}-x^{\frac{3}{2}}-10\right]
\] \\
\(\left[y^{\prime}=\right] \quad 6 x^{-\frac{1}{2}}-\frac{3}{2} x^{\frac{1}{2}}\) \\
Puts their \(\frac{6}{x^{\frac{1}{2}}}-\frac{3}{2} x^{\frac{1}{2}}=0\) \\
So \(x=\quad, \frac{12}{3}=4 \quad\) (If \(x=0\) appears also as solution then lose A1)
\[
\begin{aligned}
\& x=4, \quad \Rightarrow y=12 \times 2-4^{\frac{3}{2}}-10, \quad \text { so } y=6 \\
\& y^{\prime \prime}=-3 x^{-\frac{3}{2}}-\frac{3}{4} x^{-\frac{1}{2}}
\end{aligned}
\] \\
[Since \(x>0\)] It is a maximum
\end{tabular} \\
\hline (a)
(b)

(c) \& | $1^{\text {st }}$ M1 for an attempt to differentiate a fractional power $x^{n} \rightarrow x^{n-1}$ |
| :--- |
| A1 a.e.f - can be unsimplified |
| $2^{\text {nd }}$ M1 for forming a suitable equation using their $y^{\prime}=0$ |
| $3^{\text {rd }}$ M1 for correct processing of fractional powers leading to $x=\ldots$ (Can be implied by $x=4$) |
| A1 is for $x=4$ only. If $x=0$ also seen and not discarded they lose this mark only. |
| $4^{\text {th }}$ M1 for substituting their value of x back into y to find y value. Dependent on three previous M marks. Must see evidence of the substitution with attempt at fractional powers to give M1A0, but $y=6$ can imply M1A1 |
| M1 for differentiating their y^{\prime} again |
| A1 should be simplified |
| B1 . Clear conclusion needed and must follow correct $y^{\prime \prime}$ It is dependent on previous A mark (Do not need to have found x earlier). |
| (Treat parts (a),(b) and (c) together for award of marks) |

\hline
\end{tabular}

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@inneydirect.com

Order Code US022707 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

